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FOREWORD

This final report is submitted to the National Aero-

nautics and Space Administration, Manned Spacecraft Center,

covering work performed under Contract NAS 9-1587, Proton

Flux Experiment.

The work was performed during the period 27 May 1963

to 30 September 1966, at the Lockheed Palo Alto Research

Laboratory, Palo Alto, California.
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ABSTRACT

This report describes two experiments which were performed

aboard the Gemini-4 and Gemini-7 spacecraft to measure the exter-

nal radiation environment. Omnidirectional fluxes and spectra of

electrons in the 0.5-8.0-MeV energy range and of protons in the

25-80-MeV energy range as well as the omnidirectional proton flux

greater than approximately 80 MeV were measured by scintillation

spectrometers employing 16-channel pulse-height analyzers. A de-

tailed description of the spectrometers including design philosophy,

laboratory and in-flight calibration, and flight performance is

included. Preliminary results from the experiments in the form

of proton and electron flux contours and spectral shapes in B,L

space are given. A comparison between the present data and pre-

vious experimental and theoretical results is also included. Pro-

posed additional detailed data analysis is suggested.
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Section i

INTRODUCTION

Twoexperiments designed by the SpaceRadiation Group of the Lock-

heed Palo Alto Research Laboratory and designated as the MSC-2experiments

have been conducted aboard Gemini spacecraft to measure in detail the ex-

ternal proton and electron environment. T_E flux and spectrum of elec-

trons in the 0.5-8.0-MeV energy range and of protons in the 25-80-MeV

energy range were measuredaboard the Gemini-4 spacecraft from 3-7 June,

1965, with a sintillation spectrometer employing a 16-channel pulse-height

analyzer. Frem 4-18 December,1965, a similar experiment with somewhat

different energy ranges was performed on the Gemini-7 spacecraft.

These experiments have provided detailed flux and spectrum measure-
ments in the vicinity of the South Atlantic anomaly, where the population,

lifetime, and behavior of particles trapped on low magnetic shells are

greatly influenced by the earth's atmosphere. Therefore, it is possible

to study loss and redistribution mechanismsas well as the overall time
variations encountered in the inner radiation belt by meansof detailed

comparisons between experimental data and atmospheric scattering theory.

Previous comparisons of this sort have been limited by the number of de-

tailed experimental measurements[Imhof, et al., 1963; Mann, et al., 1963;

Mozer, et al., 1963; Freden and Paulikas, 1964; Imhof and Smith, 1965a,b,

c,d; West, et al., 1965]. Data acquired from higher altitude satellites

are not so directly applicable to the understanding of phenomena in this

low-altitude region. Therefore, the Gemini-4 and -7 radiation experi-

ments will allow more scientific analysis and understanding than had

been possible heretofore concerning the lower edge of the inner radiation

belt.

In addition, and of particular interest to NASA-MSC, virtually all

of the radiation encountered by the Gemini and early Apollo missions will
,J
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be accumulated in this region. A detailed knowledge of the flux and

spectrum of the radiation experienced in these orbits is essential to an
accurate prediction of doses to be received by astronauts and equipment

on these flights. This information is also of importance to satellite-
borne scientific experiments which require a knowledge of the radiation

environment. Since the available data are limited and because the be-

havior of the trapped radiation is time dependent, frequent updating of
the lower inner radiation belt model is required. Experiments performed

periodically on low-altitude spacecraft have provided our best source of
such information.

Our knowledge of the origin of the natural radiation belts and of
the mechanismsinvolved in their continual losses and regeneration is

still rather limited after several years of investigation. At low alti-

tudes it has been established, however, that the atmosphere encountered

by both trapped protons and electrons in their trajectories dominates
their behavior [Welch, et al,, 1963; Lenchek and Singer, 1963; Walt and

MacDonald, 1964a]. The interaction for electrons is primarily scatter-

ing, producing diffusion in both energy and pitch angle. A fraction of
those which are scattered toward lower mirror points in the dense at-

mosphere.are permanently lost. The replenishment of these electrons to
maintain the natural belts occurs in a mannerwhich is not clearly under-

stood. Unlike electrons, trapped protons lose their energy primarily

through ionization interactions with the atmosphere in their path. The

replenishing source of these protons is also not clearly understood al-

though the decay of cosmic-ray albedo neutrons [Lenchek and Singer, 1963]

appears to be one of the significant mechanisms. Difficulty in predict-

ing the behavior of these trapped particles arises from the lack of de-

tailed knowledge of the source term in both cases.
The_Starfish high-altitude nuclear detonation of 9 July, 1962, pro-

vided a unique opportunity to investigate the time behavior of trapped
electrons since it created an intense artificial belt of electrons with

fission-like energies at low L shells. In this situation, the source

term was reasonably knowr%andseveral satellite experiments were performed

2
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shortly after the event. Based on these early time data, Walt [1964b]

has shown that the predominant loss mechanism for these fission electrons

at L _ 1.25 is atmospheric scattering. In particular, the narrow but

important anomaly region of the inner radiation belt dominates the life-

time of these electrons. Several experiments have been performed _ozer,

et al., 1963; Imhof and Smith, 1965a,b,c,d; West, et al., 1965] to in-

vestigate the intensity, spectrum, and decay of this radiation belt.

The Gemini-4 and -7 experiments offer a valuable opportunity to meas-

ure in detail the intensity, spectrum, and decay of this radiation some

three to four years after the event. By comparing early time data and

the current resultswith the predictions based on atmospheric scatter-

ing, we should be able to learn a great deal about the atmosphere con-

trolling the decay rate and whether other loss mechanisms are also im-

portant.

In addition to the two spatial parameters, B and L, it has been

shown [Welch, et al., 1963; Paulikas and Freden, 1964; Imhof and Smith,

1965b; Vernov, et al., 1965] that longitude also becomes an important con-

trolling parameter for electrons observed at low altitudes on almost any

L shell. The fluxes of electrons for L _ 1.7 trapped with mirror points

at B,L positions for which the minimum altitude is less than lO0 km ex-

hibit a strong dependence on longitude. Fluxes just west of the magnetic

anomaly region are typically about an order of magnitude greater than

those measured just east of the anomaly at comparable values of B and L.

In addition, at a given B,L value the spectrum west of the anomaly is

softer than that east of the anomaly. This effect has been attributed

to large-angle coulomb scattering of trapped electrons resulting in their

shift to high B values. The phenomenon has been compared to a windshield

wiper in that trapped electrons on magnetic shells L _ 1.7 which in their

eastward drift around the earth encounter the anomaly region from the

west are "swept out" by small-angle atmospheric scattering and then

"built up" again just east of the anomaly perhaps by large-angle scatter-

ing effects. Clearly, a very intriguing and important source and loss

mechanism is involved in this region. The Gemini experiments may provide

3
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interesting longitudinal-dependent data obtained during solar minimum

for comparison with earlier results.

Experimental data [Freden, et al., 1964] have shown that the equi-

librium flux and spectrum of energetic protons in the inner radiation

belt are quite stable. Since protons lose their energy primarily through

ionization processes with the atmospheric constituents, a change in the

flux should be observed as the atmospheric density changes during the

solar cycle [Blanchard and Hess, 1964]. The present data should provide

detailed proton flux and spectra during solar minimum for comparison with

earlier results obtained closer to solar maximum. This comparison, par-

ticularly when combined with a similar analysis of electron data obtained

from the same spectrometer, should result in an accurate definition of

the atmosphere over this period.

A detailed knowledge of the flux and spectra of both electrons and

protons at low L shells is also important from an operational aspect.

The capability of predicting and calculating radiation doses to be re-

ceived ay astronauts and equipment on typical Gemini, earth-orbiting

Apollo and M0L flights must be based on current and accurate knowledge of

the radiation environment. This can only be provided by conducting periodic

experiments such as the present ones. The limited quantity of available

data on protons and electrons on low L shells is illustrated by Vette's

[1966] model of the trapped radiation environment. For magnetic shells

of L _ 1.7 only three sets of experimental electron data were available

to Vette. Many more measurements were available for higher L shells. The

situation is identical for protons. The present Gemini data should prove

valuable in updating and substantiating the current environmental model in

this region.

4
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Section 2

DESCRIPTION OF THE EXPERIMENTS

2.1 Proton-Electron Spectrometer--Gemini-4

The experiment performed aboard the Gemini-4 spacecraft to measure

the external proton and electron environment utilized a scintillation de-

tector in conjunction with a multichannel pulse-height analyzer. A photo-

graph and cross-sectional view of this spectrometer is shown in Figures 1

and 2, respectively. The basic detector for both protons and electrons

was a large plastic scintillator (Pilot-B) 7.87 cm in diameter and 5.08

cm high. The size and shape of the scintillator were chosen to provide

high sensitivity and uniformpath length over the entire acceptance solid

angle of 1.2_ steradians for electrons of energy from 0.5-8.0 MeV and pro-

tons of energy from 25-80 MeV.

Separation of electrons and protons was accomplished by the differ-

ent ranges of energy deposit in the detector and the known relative in-

tensities of the two types of particles within these ranges. In particu-

lar, there are a negligible number of electrons to be expected with ener-

gies above 8 MeV [Imhof and Smith, 1965c] compared with the expected proton

flux above 25 MeV [Freden, et al., 19643. The spectrometer was located

at the center of the equipment-adapter module of the spacecraft with an

aft view cone of 68.2 degreeshalf-angle. A thermal curtain which cov-

ered the rear of the module in combination with a thin (lmg/cm s)

aluminized-mylar covering over the entrance aperture of the spectrometer

eliminated protons with incident energy in the 0.5-8.0 MeV range.

The light from the detector scintillator was coupled to a ruggedized

type 4439 photomultiplier by a lead-glass light pipe 2.54 om in diameter

by 1.27 om thick. This also provided approximately 5.1 gm/cm s of shield-

ing for the detector scintillator in the backward direction. The lead

glass combined with the shielding provided by the photcmultiplier, electronics,



FIGURE 1. Photograph of Gemini-4 Proton-Electron Spectrometer. 
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aluminum containers, and the spacecraft reduced to a negligiblequantity

the effect of energetic particles entering the detector scintillator

from the solid angle defined by the light pipe.

Th_Tentire detector scintillator except for the acceptance aperture

was surrounded by a combination of shielding material and an ancicoinci-

dence scintillator. The purpose of the shielding was to prevent the

penetration of most of the energetic particles into the detector scin-

tillator from directions other than the acceptance solid angle. The top

of the scintillator was protected by a 0.218-cm thickness of tungsten

(Fansteel-77) to provide a shielding of 5.41 gm/cm 2 corresponding to the

range of an 8.5-MeV electron and a 53-MeV proton. The surrounding walls

and bottom of aluminum provided a minimum shielding of 3.43 gm/cm 2, cor,

responding to the range of a 5.3-MeV electron and a 56-MeV proton. Com-

pletely surrounding the mafn scintillator, except for a 2.54-cm diameter

acceptance aperture and the light pipe, was a plastic (Pilot-B) anti-

coincidence scintillator. This scintillator had an energy threshold of

approximately 300 keV and was sufficiently thick to detect all particles

above that energy, including cosmic rays. Thus, all particles not enter-

ing through the acceptance solid angle were rejected from further analysis.

The aluminum shielding outside the anticoincidence detector was necessary

to limit the anticoincidence dead time to a reasonable value by stopping

most of the undesired energetic particles. Three photomultipliers, type

C70102, viewed the light from the anticoincidence scintillator to obtain

maximum detection sensitivity.

A block diagram of the data-handling system of the spectrometer is

shown in Figure 3. Pulses from the detector-photomultiplier were

coupled to the analysis system by a preamplifier stage with two discrete

gain steps, in order to cover the broad range of energy involved. This

gain change was accomplished in flight by means of an internal solid-state

timer which allocated alternate time periods of 18 seconds to each of the

two energy ranges° An analog voltage from the _tmer to the telemetry pro-

vided a monitor on the range under analysis.

Pulses from the three photomultipliers viewing the anticoincidence

scintillator were coupled to a common integral discriminator by three

8
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preamplifiers. When the discrimination level was exceeded, an enable

signal was applied to an anticoincidence gate which then prevented any

detector-scintillator signal from being analyzed during the following 3-

microsecond period. The enable pulses were also fed to a logarithmic

ratemeter to provide the anticoincidence or singles rate to the telemetry.

Pulses from the detector scintillator which passed through the anti-

coincidence gate were analyzed by a 16-channel pulse-height analyzer of

the analog-to-digital conversion type ERowland, et al., 1963; Reagan, et

al., 1965]. The channel-address which corresponded to an input pulse-

height from the detector was coded in binary format and was sampled in

parallel as a four-bit bi-level word by the PCM telemetry system at a

20-sample-per-second rate. The input of the analyzer was inhibited from

receiving any additional information until the pulse under analysis had

been sampled by _the telemetry. In this manner, a random spectrum sampling

of the incoming radiation was obtained. Because of this relatively low-

sampling-rate limitation, the absolute flux of incoming radiation was

determined by a group of ratemeters. Pulses which passed the anticoinci-

dence gate triggered a discriminator having a threshold which was matched

to that of the pulse-height analyzer. Two linear ratemeters covered the

counting range to about 800 counts per second. A logarithmic ratemeter

which overlapped the linear ratemeter extended the counting rate capabil-

ity to approximately 500,000 counts per second. The outputs of these

ratemeters, which were analog voltages between 0 and 5 Vdc, were sampled

by the telemetry and converted to an eight-bit binary word at a 1.25-

sample-per-second rate.

A dc-to-dc converter was utilized to convert the unregulated input

voltage to regulated instrument voltages and to provide required isola-

tion from the spacecraft. A temperature circuit which was capable of meas-

uring the internal instrument temperature between -30°C and +7_C was also

incorporated to permit temperature corrections to be made to the data.

10
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2.2 Proton-Electron Spectrometer--Gemini 7

At the request of NASA-MSC,the proton-electron spectrometer used

in the Gemini-4 experiment was redesigned for the Gemini-7 flight to

measureprotons downto 5 MeVin addition to measuring electrons in the

O.5-4.0-MeV energy range. This is a difficult experiment to perform

since one is required to measurea relatively low flux of natural pro-

tons in an energy and spatial region where an intense flux of fission-.

type electrons exist. The experiment becomesmore difficult when a plas-

tic scintillator is used to measureboth types of particles since the light

output efficiency in a scintillator is significantly lower for protons

than that for electrons over the sameenergy region. In Figure 4, the

electron pulse-height in MeVequivalent to the light output of protons

in the 1-10-MeV is presented for two comnercially available plastic scin-

tillators [Evans and Bellamy, 1959]. For example, a 5-MeVproton produces

a light output equivalent to a 2-MeVelectron. This disadvantage of

plastic scintillator is, however, offset by its manyadvantages, including

its short decay time which allows detection to very high counting rates

without pile-up of long-term fluorescence effects.
To identify unambiguously the type of particle producing the light

output in the main detector, an additional plastic scintillator, 0.025

cm thick, was placed in front of and operated in coincidence with the main

detector. Protons in this energy range in traversing this scintillator

lose considerably more energy per unit path length than equivalent energy

electrons because of their muchhigher specific ionization. On this basis
a distinct separation of pulse heights for protons and electrons should

then be possible. Figure 5 showsthe calculated energy loss in the above

scintillator for incident protons and electrons based on the known range-

energy relationships of protons [Rich and Madey, 1954] and electrons

[Nelms, 1956] in a hydrocarbon. The relative light output for these two

particles based on the data shownin Figure 4 is also shown. A unique

identification of protons would then be possible by accepting only those

pulse heights which correspond to an energy loss of greater than

ll
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approximately i00 keY. If these pulses were operated in coincidence

with pulses in the main or "E" scintillator, only protons would be

aaa/_zed.

The above considerations are only valid in an ideal situation. Sev-

eral phenomena associated with the large aperture and thinness of the

"dE/dx" scintillator and with the high intensity electron background al-

ter the situation somewhat. Because a large acceptance aperture is ne-

cessary in a high sensitivity omnidirectional detector, incident electrons

at extreme angles can traverse path lengths as much as a factor of three

greater than expected for normal incidence. In addition, energetic elec-

trons in their travel through the scintillator are scattered into statis-

tically random paths producing pulse heights many times greater than ex-

pected. This effect is illustrated in Figure 6 where a laboratory pulse-

height spectrum'of energetic electrons in a 0.025-cm scintillator is

shown. On the basis of range-energy considerations, a 62-keV peak cor-

responding to the energy deposit of a minimum ionizing electron in the

scintillator should be obtained. In addition to the peak, however, a

long tall which extends to several times the peak energy is obtained.

Because the electron flux in typical Gemini orbits is several decades more

intense than the expected proton flux, a bias well out on this tail is

required to avoid false coincidences on electrons. All of these effects

demand that the effective bias on the dE/dx scintillator be raised. In

practicality, one is not able to achieve the ideal separation shown in

Figure 5 but is limited to a coincidence proton range of 5-20 MeV that

is relatively free of electron contamination.

Those protons which are sufficiently energetic to traverse the "dE/dx"

scintillator deposit their remaining energy in the main of "E" scintillator.

The actual energy deposited in this scintillator as a function of incident

energy is shown in Figure 7. The light output in the scintillator for the

protons relative to the electron light output is also shown. For example,

an incident 5-MeV electron deposits approximately 2 MeV in the "E" scin-

tillator. From Figure 4, this energy deposit in light output units is equiva-

lent to the energy deposit of a 0.5-MeV electron. In practice, then, one

14
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can analyze protons in the 5-20-MeV range in the "E" scintillator by de-

manding a coincidence between the "dE/dx" and "E" scintillators. If the

coincidence is not demanded, all pulses in the "E" scintillator corres-

ponding to incident protons greater than 5 MeV or electrons greater than

0.5 MeV will be analyzed. Since the intensity of electrons in most re-

gions of the Gemini orbits are so much greater than the proton intensity,

one essentially obtains an analysis of electrons above this threshold

with only a very small and determinable proton contamination.

A photograph and cross-sectional view of the actual spectrometer

used on the Gemini-7 flight is shown in Figures 8 and 9, respectively.

The basic detector for analyzing both protons and electrons was a cylin-

drical plastic scintillator (Pilot-B) 5.59 cm in diameter by 2.79 cm in

height. These dimensions correspond to a normal incidence energy deposit

of 5.0 MeV for electrons, 60 MeV for protons, and 5.7 MeV for minimum

ionizing protons. The spectrometer aperture was 2.29 cm in diameter

compared to 2.54 cm diameter of the Gemini-4 spectrometer. The "dE/dx"

scintillator which was 0.025 cm thick by 2.29 cm in diameter was mounted

adjacent to the "E" scintillator in a lucite light pipe which coupled

the light output to an Amperex XP-lOll-02 photomultiplier. The shield-

ing which surrounded the entire detector assembly was identical to that

employed in the Gemini-4 spectrometer. Therefore, both scintillators

were subjected only to those electrons which entered through the opening

aperture. Energetic protons greater than approximately 60 MeV could also

penetrate the shielding and be detected in the "E" scintillator in the

electron mode of operation. Over most spatial regions, however, this

background flux within the electron energy rnage of interest will be

small because of the much higher flux of electrons within the acceptance

aperture. The details of this penetrating background can be measured in

flight as the flux and spectrum obtained when the detector is oriented

along magnetic field lines where the electron flux within the acceptance

angle vanishes. This flux and spectrum as a function of the magnetic shell

parameter, L, can then be subtracted from the flux and spectrum obtained at

other orientations.
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FIGURE 8. Photograph of Gemini-7 Proton-Electron Spectrometer. 
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A block diagram of the data-handling system used to perform the

measurement is shown in Figure lO. The light from the "E" and "dE/dx"

scintillators was coupled to two ruggedized photomultiplier tubes, type

XP-lOll-02. Each of the tubes was equipped with a high-voltage power

supply and preamplifier similar to those described for the Gemini-4 spec-

trometer. Since the spectrometer was to operate in two modes, an inter-

nal programmer was utilized to control and identify the time multiplex-

ing of the modes. In the proton mode, a coincidence gate between the

"E" and "dE/dx" signals was enabled forl8 seconds. Pulses which ex-

ceeded an integral energy level in either of the scintillators generated

50-nanosecond pulse inputs. If pulses from both the "E" and "dE/dx"

scintillators were simultaneous in time within the 80-nanosecond resolu-

tion of the coincidence circuit, a gate width of 400 nanoseconds was cre-

ated. This gate allowed the signal from the "E" scintillator to pass through

for further analysis. In the electron mode, the programmer provided a con-

tinuous signal to one input of the coincidence circuit such that any sig-

nal from the "E" scintillator which exceeded the discrimination level would

create a coincidence and open the signal gate.

The signals passing through this gate were analyzed for pulse height

by a 16-channel pulse-height analyzer identical to that used in the Gemini-4

experiment. Because the sampling of these data by the telemetry was per-

formed at only 20 samples per second, alternate methods of obtaining the

absolute counting rates were utilized. To obtain the absolute coincidence

rate, two linear ratemeters covering the range from 0 to 2000 counts/sec

were used. In the proton mode, this range was adequate to cover the ex-

pected proton flux. In the electron mode these ratemeters functioned es-

sentially as "singles" counters since a coincidence was not demanded. To

extend the electron range to approximately 3 × 105 counts/sec a logarithmic

ratemeter was used which continuouslymonitored the output of the "E" dis-

criminator. A logarithmic ratemeter also continuously monitored the out-

put of the "dE/dx" discriminator. All four ratemeters had an output volt-

age range of 0-5 Vdc and were sampled 1.25 times per second.
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The Gemini-7 spectrometer contained a programmable in-flight cali-

bration system which will be described in the next section. A tempera-

ture sensor was also included to allow corrections to be made to the data

for the effects of temperature. An internal dc-dc converter provided

regulated power for the instrument and isolation from the vehicle power

system.
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Section 3

CALIBRATION PROCEDURE

3.I Laborator_ Calibration

The spectrometers were calibrated in the laboratory to determine

their response to protons and electrons over the energy and intensity

range of interest. To accomplish this, a variety of calibration devices

including electronicpulse generators, radioaotive sources, beta-ray spec-

trometers, and particles obtained from reactions produced with the Lockheed

3.5-MeV Van de Graaff accelerator were used. A description of each of these

techniques follows.

3.1.1 E_iectronic Calibration

To establish such criteria as the linearity and ranges of the pulse-

height analyzers and the counting-rate ranges of the ratemeters used in

the spectrometers, electronic calibration techniques were used.

Pulse generators having outputs simulating the pulses obtained from

the scintillation detectors were used to measure the linearity and range

of the pulse-height analyzers. An example of this is shown in Figure ll

where the amplitude of such a pulse generator is plotted against channel

number of the Gemini-7 pulse-height analyzer in both the proton and elec-

tron modes. This procedure was used to match the analyzer conversion gain

to the desired energy range. The gain of the scintillation detector was

then adjusted to provfde the proper output channel for a given energy input.

A similar technique was utilized to calibrate the ratemeters in the

system. This is illustrated in Figure 12 where the output of the rate-

meters used in the Gemini-4 spectrometer is plotted against the input

from a variable frequency pulse generator. The ratemeter response was

adjusted with this technique to provide the desired overall range and

overlap between ranges. In all cases, these electronic calibrations

-: 23
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were substantiated by using one or more of the additional calibration

schemes to be described.

3.1.2 Calibration With Radioactive Sources

Once the desired electronic dynamic ranges were established with the

previous techniques, radioactive sources were used to set the gain of the

scintillation detectors. An example of this is shown in Figure 13 where

the spectra obtained for several different radioactive sources with the

Gemini-7 spectrometer in the electron mode are shown. The 8-ray end

points of such electron sources as Srs°-Ye° and the Cempton electron

edge produced by such gamma sources as Na ss and Th-C were used as accur-

ate energy calibration points since photopeaks are not available in plas-

tic scintillator. Also shown is the spectral shape of the gallium-

phosphide light diode used as an in-flight calibration source. A series

of Sre°-Yg° sources having electron rates up to lO6 electrons/sec were

used in addition to establish the effects of high rates on the spec-

trometer.

To determine the resolution of the spectrometers and the effects of

scattering in the electron mode and to substantiate the calibration per-

formed with the radioactive sources, an additional electron calibration

was performed with a 180-degree beta-ray spectrometer employing Sr9°-Ye°

as a source of electrons. Monoenergetic electrons up to 2.27 MeV in en-

ergy could be selected with this technique. Figure 14 illustrates the

spectrum obtained from the "E" scintillation detector in the Gemini-7

spectrometer for a monoenergetic 2-MeV electron input. The spectrum also

illustrates thesmall backscattering effect that existed in this detector.

Much more detailed investigation of the resolution and backscattering ef-

fects as a fUnction of incident electron energy and orientation is re-

quired for a complete interpretation of the flight data. This work could

be performed with the available backup instruments for each flight.

3.1.3 Accelerator Calibrations

To establish the response of the spectrometers to protons and higher
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energy electrons, the Lockheed 3.5-MeV Van de Graaff accelerator was used.

Electrons with energies up to 13 MeV were obtained from the decay of Lis

(T½ = 0.8 sec) through the reaction LiV(d,p)Li s . The Van de Graaff beam

was swept in a cyclic manner such that the Li7 target was b_nbarded with

deuterons for a 1-second period and after a 1-second delay the electrons

from the Lis were counted for 1 second. A fission-like spectrum simulat-

ing that expected in flight was created by degrading the Lis electrons with

appropriate absorbers. Figure 15 shows the response of the Gemini-5 spec-

trometer at L = 1.30, B = 0.220. To determine the effect of bremsstrah-

lung_roduced by these fission-type electrons, the entrance aperture was

shielded and the detector was rotated 90 degrees to the incident beam.

The resultant spectrum for the same bombarding period is also shown.

The background spectrum obtained from the Gemini-4 spectrometer at the

same B,L region in space as previous but for a detector orientation which

was 90 degrees to the incident electrons is also shown. It can be seen

that although the laboratory fission spectrum is somewhat harder than ex-

perienced in flight, the shape and intensity of the flight background spec-

trum is in reasonable agreement with the bremsstrahlung spectrum obtained

in the laboratory. T_is smallbackground can then be subtracted from the

measured values to obtain the true electron spectrum and flux. This is

another area where additional calibration as a function of incident en-

ergy and orientation is required before a detailed bremsstrahlung flux

and spectrum can be established. This work can be performed with the

available backup spectrometers from both flights.

Protons in the energy region of 12-20 MeV were obtained by bombard-

ing a B1°target with 1.5-MeV HeSparticles from the Van de Graaff through-

the reaction Bl°(HeS,p)C 12. The resultant spectrum obtained with the

Gemini-4 spectrometer is shown in Figure 16. The 12.1-MeV, 14.5-MeV,

and 19.2-MeV proton peaks corresponding to the second excited state,

first excited state, and ground state of Cl2are easily recognized. This

spectrum was then gate d with the output of the integral discriminator in

the flight spectrometer to determine the proton energy threshold. This

knowledge combined with the electronic calibration shown in Figure ll and
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and the knownnon-linear response of protons in plastic scintillator

[Evans and Bellamy, 1959; Gooding and Pugh, 1960] was sufficient to es-

tablish the response of the spectrometer to higher energy protons.

3.2 Field and In-Fli6ht Calibration of the Spectrometers

To provide a monitor of the spectrometer calibration throughout

the several months of field testing which preceded a launch, a combina-

tion of radioactive sources and a calibrated light source were used. In

the case of the Gemini-4 spectrometer, the radioactive sources shown in

Figure 13 were used for ground calibrations. In addition, the flux and

spectrum obtained from the small amount of Thorium metal present in the

adapter section of the spacecraft was used both as a ground and an in-

flight calibration. Fortunately, this Thorium background was not intense

enough to seriously degrade the experiment an%by compiling the spectrum

over regions where other particle fluxes were not present, a statistically

significant flux and spectrum was available as an absolute gain monitor.

Compilation of this backgroundon an orbit-by-orbit basis showed that the

Gemini-4 spectrometer exhibited no measurable gain shift throughout the

flight. In addition to this Thorium calibration source, the Gemini-7

spectrometer contained a programmable calibrated light source. When

power was applied to the instrument, the 18-second proton mode was initi-

ated by the internal programmer. Following this period, the programmer

enabled a calibration circuit consisting of a pulsating gallium-phosphide

light-emitting diode for the normal 1S-second electron mode. The light

pulses from this diode simulated the scintillation pulses in the "E" de-

tector with enough stability and resolution to be analyzed into a single

channel of the pulse-height analyzer. This provided an excellent monitor

of small gain shifts in the overall "E" system. The stable 900 Hertz

rate of the light pulses also provided an in-flight monitor on the cali-

bration of the "E" ratemeter circuits. The calibration circuit incorpor-

ated a lockout feature such that after the initial 13-second period it
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was disabled until power was disrupted and reapplied to the instrument.
Figure 17 showsboth the typical Thorium and calibration light spectra

that were obtained from the Gemini-7 spectrometer. During ground check-

outs of the spectrometer, an electronic decoder which accepted the space-
craft PCMtelemetry signals and interfaced the spectral information with

a laboratory-type multichannel analyzer was used. This provided a rapid

and accurate assessment of the overall system.

A preliminary evaluation of the in-flight calibration sources on

the Gemini-7 flight indicate that the gain of the system did not remain

constant throughout the flight. In order to perform the low-energy pro-
ton measurement, it was necessary to mount the spectrometer outside the

thermal curtain and centrally located at the rear of the spacecraft, as

shownin Figure 18. As a result, the thermal excursions experienced by

the instrument were muchmore severe than during the Gemini-4 flight.

Measurementsof the temperature at a location in the potted electronics

section of the spectrometer as a function of systems time after launch
show a continuous increase to about a maximuminternal temperature of

+50OC. Temperatures at the scintillators and photomultipliers which

quite often were in full sun exposure probably exceededthis level. The

calibration sources show that the system experienced a slow increase in

gain as the temperature increased. By following the calibration edge,

however, appropriate gain compensation can be applied to the data. With-

out this calibration source, serious error would exist in the resulting

data.
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Section 4

DATA PROCESSING

4.1 Dat____a_antit[ and Q_alit_

Data were obtained from the spectrometer throughout the Gemini-4

flight period of 3-7 June, 1965. Of the total of twelve orbits which

were programmed for turn-on, nine orbits of good data were obtained. The

remaining data were lost because of poor signal quality on the flight mag-

netic tapes. Data were obtained from the Gemini-7 spectrometer for the

first seven-day period of the 4-18 Decembe_ 1965, flight. Twenty-four

orbits of useful'data have been obtained to date from this flight.

Twenty-two additional orbits of data may be potentially available.

The raw data were provided by the NASA-MSC Computation and Analysis

Group and presented both as tabular listings and on magnetic tape for sub-

sequent utilization. The analog voltage outputs of the spectrometer were

listed at each sampling of the telemetry; i.e., every 0.8 second. The

sixteen samples of the pulse-height analyzer output obtained during this

time period were decoded, sorted, and listed by channel number in the

digital computer output. At the end of each energy-range period, the

totalized content of each channel was printed. The data from the MSC-3

magnetometer experiment were also supplied on magnetic tape. Pertinent

spacecraft ephemeris data were provided for the entire flight in thirty-

second intervals. In areas of particular interest, ephemeri s data were

generated every five seconds and merged with the "B,L" program of McIlwain

[1961] to provide the spectrometer data in terms of the earth's magnetic

field strength, B, and the magnetic shell parameter, L.

4.2 Orbit Coverage i__nB_L_

Because of the low-altitude, circular nature of the Gemini orbits,
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significant radiation fluxes were encountered only in the vicinity of

the Brazilian anomaly. In this region, which is located between South

America and Africa, the magnetic field of the earth departs drastically

from a dipole field representation and both trapped and precipitated par-

ticles are observed at low altitudes. Figure 19 shows the regions of

each orbit of Gemini-4 in geographic coordinates where significant par-

ticle fluxes above background were observed. Figure 20 shows the orbital

paths for the same region in B,L space. The orbital paths in B,L space

for the Gemini-7 flight are shown in Figure 21. On both flights, the re-

gion of 1.1 < L < 1.7 and 0.213 < B < 0.260 was reasonably well covered

by the orbital trajectories through the anomaly. The magnetic equator

is plotted on Figures 20 and 21 as well as the locus of B,L points cor-

responding to particles which in their longitudinal drift around the

earth encounter a minimum altitude of lO0 kilometers. Particles encoun-

tering minimum altitudes less than this value are presumably lost in a

very short time due to atmospheric collisions. Therefore, one can expect

to encounter particle fluxes with significant lifetimes on these flights

only in the B,L region below the hmi n = lO0 km curve. Spacecraft alti-

tudes in this region varied between 27_ and 293 kilometers.

4.3 Telemetr_ Outputs

Figure 22 contains plots of the analog voltage outputs of the spec-

trometer for orbit 7 of the Gemini-_ flight as a function of system time.

The parameters, TC1, TC2, and TC3, refer to the total-flux count-rate

meter outputs in order ofincreasing dynamic range. Some overlap existed

between these ranges so that cross-calibration with the flight data was

possible. The output of the anticoincidence detector is also shown.

Background condition for all four ratemeters was approximately 5.0 Vdc.

Increasing flux deflected the ratemeters toward 0.0 Vdc in an approxi-

mately linear manner for parameters TC1 and TC2 and in approximately a

logarithmic manner forlparameters TC3 and Anti-Coinc. Figure 22 is il-

lustrative of the data quality throughout the flight. The data are in

37



LMSC/2-44-66-I

f
/

!
J
L

O

<C
O
m

n_
n,

f

\

\ I_ .o

_, xx/
_3\',II

t " t
t %

i//¸ • .

o

<_ //
n,n II
f'%,,..

,,, i,t_o_
,,_

•< I _: l;f

= '1_ 7',

in o if)

' .19301 3(]nlllV7 :OIHdV_I903O

38

0

ILl

b.l
Iz3r'_
"-E:)

I--
(.9
Z
0
_J

0
m

7"

IK
(.9
O

.

O

1:1
O

Q)

o

cO
o
.,4

• _,-0.,4
O,-4

o_
',-gH

n
_. ,,..-I

0_

0
ID

0

I-4



I

LMSC/2-44-66-I

0.29

0.28

0.27

0.24

0.22

0.21

8

0.20
1.0 1.1 1.2

MAGNETIC EQUATOR

52
22

MINIMUM

- 100 KM

\ 7 36\

I I 1 I I

1.5 1.4 1.5 1.6 1.7
L ( EARTH RADII)

FIGURE 20. Regions of B,L Space Covered by the Gemini-4 Flight.

1.8

39



LMSC/2-44-66-1

0.30

0. 29

p MAGNETIC EQUATOR

21

51

_3

GT-7 TRAJECTORY IN B, L SPACE

0.28

0.27

m

O. 26

O. 25

m
= 100KM

/

O.24

0.23

0.22

0.21

0.20 I

1.0 1.1

FIGURE 21.

i i l I
1.2 1.3 1.4 1.5 1.6 1.7

L (R_)

Regions of B,L Space Covered by the Gemini-7 Flight.

4o

1.8



LMSC/2-44-66-I

._o

$

f

"i

E__

-i-

f

+--
!o
J

Io
!-
I"

0 o

-_o

_o

• _-- 0i o o
,,. ,o OoO

-t- ,.--- , .._aS
_'° ?° i'° _o

.
" " °ool" -r- ;./

i° i° .-° ,_ o -_'-°

"f- -;- _2 o;o !o o

I" o
.i ° •

Io t
_a

0.

°.

. t'l

O

°.-

o

°.,

• .';t_.t

I

Io

-4--
O _

(n -_,--
Z i

0_ 0 _i.
Z 13:: '
o_- -_--

t:::l0 LLI !o
Z n," _,1 .;
wa-w !

ILl _:;
/ '.'

I I I I I I I 1

IV)
_o_
_ 0

-2}
-98

_o_
0

- _f.
0
Iv)

o o

iv)

0

f"
I I I I I I I I

(SJ.qO^) (Sl'10^) (SI'IO^) (S±-IOA)
ONIOO-IIN_ £01 _Oi IOl

I

L_

(H
0

b-

._

0
%._-I

Ul

4._ bO

_._ ,--t

.0

!

0

0
,--t

_d
(Xl

141



IMSC/2-_-66-1

general smooth and virtually free from noise and dropouts. The fluctua-

tions observed are statistical in nature and are consistent with the ob-

served counting rates and the ratemeter time constants. These figures

also illustrate the manner in which the spectrometer alternated between

the proton and electron range every 18 seconds. The counting rates in-

dicated on TC1 and TC2 at the beginning of Figure 22 were due to the

small amount of radioactive Thorium metal present in the equipment-adapter

structure of this spacecraft. This radiation created a low background in

the electron range of the spectrometer which reduced its capability of

measuring very low electron fluxes. This background did not exist in

the proton range, however.
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Section 5

PRELIMINARYDATAANALYSISANDRESULTS

5.1 Flux Counting-Rate Contours

A preliminary analysis of both the Gemini-4 and Gemini-7 flight

data has been performed under this contract. Flux counting-rate contours

as a function of system time have been generated for all of the available

Gemini-4 data and for five orbits of the Gemini-7 data. Best fit smooth

curves were made to the ratemeter analog voltage plots for each orbit.

Voltages were read every lO seconds and converted to counting rates by

using the appropriate calibration curves. Dead-time corrections result-

ing from the random nature of the flux and from the finite resolving times

of the coincidence and anticoincidence circuits have been applied to the

calibration curves. Vehicle background in the electron range of the

spectrometer was_also subtracted.

Figures 23, 24, 25, 26, 27, 28, 29, and 30 show the counting-rate

profiles of the measured proton and electron radiation on the Gemini-4

flight. The counting rates observed in the anticoincidence detector are

also shown for each orbit. Several general characteristics of the data

are observable in these plots. Data obtained from the ratemeters in re-

gions where overlapping response occurred are in good agreement, thereby

substantiating the calibrations performed in the laboratory. At any

given time the electron cou_ting rate is from 300 to 2000 times greater

than the proton counting rate. Thus, the proton flux within the energy

range measured constitutes a maximum background to the electron measure-

ment of only 0.3 percent. Since protons of energy below 7 MeV were

shielded from the detector scintillator by the entrance window, only pro-

tons in the energy range 7-25 MeV and greater than 80 MeV could contribute

any additional contamination. The data of Freden and Paulikas [1964] in

the same region of space indicate that the proton flux between 5 and 20
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MeV is about equal to the flux between 60 and 120 MeV. Therefore, we can

conclude that the overall proton contamination to the electron measurement

may be neglected. It is also assumed that the electron flux does not con-

tribute any contamination to the proton measurement merely on the basis

of energy range and scintillator efficiency. To be detected in the pro-

ton mode, electrons would have to produce at least 12 MeV of energy de-

posit. Electrons in this energy range have not been observed in the

anomaly region, and the rates are such that the probability of pile-up

is negligibly small.

Another feature of the Gemini-4 data is the occurrence of sharp

peaks and valleys in both the electron and proton profiles on certain

orbits, particularly on orbits 7, 37, and 38. In all three cases, these

perturbations were not observed in the anticoincidence detector. The ef-

fect in each case has been associated with the orientation of the space-

craft with respect to the incoming flux. Figure 31 is a plot of ez, the

angle between the spectrometer axis and the direction of the local mag-

netic field vector as obtained from the MSC-3 magnetometer for orbit 7.

It can be seen by comparison of Figure 23 with Figure 31 that the valley

in the flux profiles coincides approximately in time with the minimum

reading of 22 degrees on the magnetometer. More detailed analysis indi-

cated that the apparent time displacement could be explained by the pres-

ence of residual magnetic fields in varying amounts in the three axes of

the magnetometer. A discussion of the technique utilized to determine

these residual offsets is given in the next section.

Iso-counting rate contours in B,L space for the anticoincidence de-

tector in the Gemini-4 spectrometer have been made and are shown in Figure

32. These count-rate data correspond to energetic protons greater than

approximately 60 MeV which penetrated the shielding in an isotropic manner.

Because of its large geometric factor, the anticoincidence detector fuac-

tioned as a very sensitive proton threshold detector. Since the geometry

was relatively complex, further analysis will be required before an omni-

directional proton flux above this energy threshold can be determined.

The total counting rates obtained from the Gemini-7 spectrometer
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in the electron mode of operation for the five orbits of data which have

been processed are shown in Figures 33, 34, 35, 36, and 37. A light leak

in the aluminized-myl_r entrance window of the spectrometer created a

highlight background in the "dE/dx" detector. As a result, useful data

obtained in the proton mode of operation is minimal. This problem did

not exist in the electron mode as the "E" scintillator was sufficiently

shielded from the entrance aperture. Some proton data were obtained in

the electron mode of operation, however. Figure 38 shows a typical spec-

trum obtained from the pulse-height analyzer in this mode of operation.

The first fourteen channels of the analyzer were assigned to covering

the electron energy range of 0.5-4.0 MeV. It can be seen that the elec-

tron flux is down in intensity over an order of magnitude between the first

and fourteenth channels. There is however a significant counting rate in

the fifteenth or overload channel. This channel represents all energy

deposits in the "E" scintillator which exceed Iapproximately 4.0 MeV for

electrons and 8.5 MeV for protons. From the available electron spectrum

below 4 MeV in the lower channels, it can be seen that any higher energy

electron contribution to this overload channel is negligible. The ob-

served counting rate in this channel must then be due to a combination

of cosmic rays, protons within the acceptance aperture, and high energy

protons which penetrate the shielding. The cosmic ray contribution can

easily be ascertained by observing the counting rate in this channel for

those portions of the flight where particle fluxes cannot remain trapped.

Since the geometric factor available for penetrating protons is approxi-

mately fifteen times greater than the geometric factor for protons within

the acceptance aperture, this overload channel functions as a very sensi-

tive detector of protons greater than approximately 80 MeV. This thres-

hold includes the effect of both shielding and electronic bias. Thus, by

using the spectral information, the total counting rate contours can be

separated into omnidirectional electron and proton fluxes above 0.5 MeV

and 80 MeV, respectively.
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5.2 Magnetometer Data

To determine the orientation of the spectrometer at any time with

respect to the magnetic field, the data from a tri-axis magnetometer

provided by the NASA-MSC-3 experiment was used on both flights. On the

Gemini-4 experiment, a rather large residual magnetic field existed on

one axis of the magnetometer due to the presence of some magnetic material

in the mounting structure. Before this magnetometer data could be used

to determine orientation, the magnitude of these offsets needed to be

determined. To accomplish this, it was first assumed that the offsets

could be both additive and multiplicative in each of the three axes.

The known value of the scalar magnetic field at any time obtained from

the Jensen and Cain 48-term magnetic field model [Jensen and Cain, 1962]

using the spacecraft ephemeris data was used as an additional input. The

following equation was used to determine the residual offsets aj :

sq (Hxi+as)s + as (HYi+a_)s + a_ (Hzi+as )2 = Bi2 . 6i (i)

where the subscript i indicates time, B is the scalar value of the mag-

netic field from the Jensen _nd Cain code, 6 is the margin of error be-

tween the value of B and the scalar field calculated from the three mag-

netometer components, Hx, Hy, and Hz . By minimizing the six partial

derivatives

8-_- [Esi2_n (E_) 2 ] (2)
8aj Li

where the term in brackets is the standard error of estimate, six equa-

tions with six unknowns were obtained. The six solutions were then sub-

stituted in equation (1) to generate a measured value of the total field

HT and a value of the angle between the instrument axis and the field

vector by the expression:

ezi = cos-_[_/_(Hzi+'Bi)] (B)
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A plot of both the raw magnetometerdata and a corrected version utiliz-

ing this technique is shownin Figure 39. The largest deviations Of HTi

from Biusing this technique are on the order of 5 percent. The values

of 8zi in conjunction with the calculated values of the angular dependent
geometric factor described in the next section provide a very consistent

explanation of the flux data in B,L space throughout the flight. This

technique should be examined in greater detail to determine if even bet-

ter agreement can be reached.
On the Gemini-7 flight, only two axes of magnetometerdata were

available. Therefore, it had to be initially assumedthat any offsets

which existed were small and that the calculated value of Bi was an ac-
curate representation of the scalar magnetic field. With these assump-

tions, the magnitude of the missing componentcould be calculated from the

equation

1

Hzi--[Bi_-Hxi_-_yi_]_ (4)

and the orientation could be obtained from the relation

Hzi (5)
ezi = cos -x B-T

If these assumptions were correct, the quantity

- H 2
Bi_ - Hxi s Yi (6)

should never be less than zero by more than would be indicated by the

scatter of the data. The raw Gemini-7 data, however, showed that this

quantity assumed negative values of fairly large absolute value. The method

of correcting these data was as follows:

An equation of the form

.I°- •
was assumed. The constants as and a4 were assumed to be small so that by

choosing data points for which_ for example, Hy i = O, no significant error
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would be introduced by dropping a4 in equation (7). Therefore, we ob-

tain the equation

Hzi = [BiS - (Hxi+ .)21½ (8)

By examining a large quantity of the data for which Hy i = 0, it was pos-

sible to calculate a_ such that Bi s - (Hxi+ a_ )s never assumed large

negative values. The same method was used to correct Hy i.

There is no method of calculating the error after the data have been

corrected in this manner other than examining most of the data keeping in

mind the last assumption in addition to the requirement that the value

ezi = cos_if i

Bi

(9)

must be continuous at values close to ezi = 9oo . An example of the re-

sults of this technique is shown in Figure 40 where the raw and corrected

magnetometer data for a region of the anomaly on the Gemini-7 flight is

presented. As can be seen, the corrected data exhibit a smooth transi-

tion through ninety degrees, in contrast to the discontinuities which

existed in the raw data.

The accuracy of this analysis, which has been based exclusively on

the magnetometer data and the calculated value of the scalar magnetic

field, must ultimately be tested by observing the consistency it produces

in the radiation data over a wide variety of orientations in B,L space.

Such an analysis has not yet been performed.

5.3 Geometric Factors

The counting rates observed by the detectors are related to the

omnidirectional particle fluxes by the expression

C
G = I

Jo (i)
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where C is the detector counting rate, Jo is the omnidirectional flux,

and G is the geometric factor of the instrument. Since the counting

rate observed for a given aperture of area A in a unidirectional particle

flux j is C = jA, the total counting rate is given by the sum over solid

angle C = _ jA_, while the omnidirectional flux is defined by Jo = _ J_Q

so that

jA_
G = (2)

S

As can be seen from Figure 9, the radiation incident on the plane

of the detector was collimated by the finite tungsten shielding and the

thickness of the anticoincidence scintillator in the vicinity of the aper-

ture. The effective area A of the detector is then the area available

for the passage of particles through the ends of an open-ended cylinder,

as shown in Figure 41.

Z
V

8

III _

/" | , z I

FIGURE 41. Effective Area of the Spectrometers Available to

Particles as a Function of the Incident Angle e.

This area can be expressed by the relation

= mr s cos e 1 - _ sin-I (6 tam e) + 6 tan _l (6 tan e)a
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where 6 = h/2r.

The spatial distribution of the particle flux must be taken into

account before this last equation may be used to integrate equation 2.

Heckman and Nakano [1963] have shown that in the anomaly region at these

altitudes the particle fluxes are near their mirror points and are there-

fore confined to a plane or "pancake" distribution normal to the local

magnetic field. The relationships between the particle flux, the longi-

tudinal axis of the detector, and the magnetic field Vector can then be

described as shown in Figure 42.

FIGURE 42. Angular Relationships Between the Incident Particle

Flux _, the Longitudinal Axis of the Spectrometer

Z, and the Magnetic Field Vector, _.

The assumptions that the flux distribution parallel to S is constant

over the dimension of the aperture and that the angular distribution of j

can be expressed completely by j(_) = constant leads to the expression

1

G = _ A [8(_)]d_ (4)

If 8 is defined as the minimum angle ebetween the Z axis and the plane of

the particle flux, as shown in Figure 43, the relation between e and _ is

cos e = cos Bcos _ (5)
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and d_ = sin 8

de Jsin_e_ sin_

Substitution of this expression into equation 4 yields

1 Femax A(e) sin e deG(8) (6)W
_in=8 Jsin_ e- sin2 8

4

where ema x is the angle at which A(e) goes to zero and is determined by

the geometry of the detector and its location in the spacecraft.

The above expression has been solved by numerical integration for

fixed values of 8. The resulting relationship of geometric factor as a

function of the cosine of the angle between the z axis of the detectors

and the magnetic field is shown for both spectrometers in Figure 43.

This mathematical analysis of the geometric factors should be verified

by experimental determinations involving the backup spectrometers. In

addition, this preliminary analysis has not included energy dependent

effects on the geometric factor.

5.4 Omnidirectional Particle Fluxes

Omnidirectional fluxes of electrons and protons measured during the

Gemini-4 flight have been generated by combining the counting rate con-

tours, the corrected orientation data, and the appropriate geometric fac-

tor as determined from Figure43. The resultant flux contours in B_L

space for electrons greater than 0.5 MeV are shown in Figure 44. A simi-

lar flux contour for protonsin the 25-80-MeV energy range is shown in

Figure 45. These fluxes should not be considered as the final results of

the experiment since more detailed analysis of each of the above items,

including a more comprehensive investigation of backgrounds, is required.

It is felt, however, that the present flux values are accurate within a

factor of two.
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Only a small percentage of the Gemini-7 data has been processed to

date. A presentation of the preliminary results of the analysis of two

orbits of data is shown in Figures 46 and 47. Omnidirectional particle

fluxes for electrons greater than 0.5 MeV and for protons greater than

approximately 80 MeV are shown. The latter data were obtained from an

analysis of the overload channel in the pulse-height analyzer as described

in Section 5.1. Vehicle background and cosmic-ray background have been

subtracted frcm the data shown. The contribution from penetrating pro-

tons to the electron data, particularly at low L values, has not yet been

analyzed, however. This background can be determined and subtracted by

investigating the flux and spectrum within the electron range at times

when the spectrometer is oriented normal to the electron flux.

5.5 Energy Spectrum Data

The information obtained from the pulse-height analyzer on the Gemini-4

experiment has been catalogued to form characteristic electron and proton

spectra for regions in B,L space covered by the flight. Figure 48 shows

the electron spectrum obtained for three different B,L regions of space.

It can be seen that the typical spectrum is essentially hard and fission-

like reflecting the remains of the artificial radiation belt created by

the Starfish high-altitude nuclear test of 9 July, 1962. The effect of a

four-year decay of this radiation can be seen as the spectrum softens sig-

nificantly for both increasing and decreasing L regions about L_l.30.

This probably indicates the contribution of a softer spectrum of naturally-

trapped electrons on L shells removed from the center of the artificial

belt. The actual spectrum in this region is a complex merging of an in-

adequately defined flux and spectrum and naturally-occurring electrons

with a flux of decaying artificially injected fission-type electrons. Fig-

ure 49 shows the characteristic electron spectrum obtained from several

orbits of Gemini-7 data. The spectral shape, particularly at higher ener-

gies, is quite similar to the Gemini-4 data in the same B,L regions.
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Flux > 80 MeV as a Function of Systems Time--Orbit 6.
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Figure 50 shows the characteristic proton spectrum obtained for the

25-80-MeV region. As can be seen, the proton spectrum is relatively hard

and flat over the entire B,L region of the flight. A characteristic

small peTk which appears on a wide range of L values can also be seen at

approximately 50 MeV.

5.6 Comparison With Previous Results

The electron data obtained from the Gemini-4 and -7 experiments have

been compared at specific B,L regions with the previous experimental re-

sults of Imhof and Smith [1965c] and with the theoretical calculations of

Walt [1964b] based on the decay of the Starfish electrons due to atmos-

pheric scattering. Figure 51 shows the omnidirectional electron flux

> 1.2 MeV obtained from the experimental data as a f_nction of days after

the Starfish event. The data have been selected for L shells of 1.185

and 1.25 and for a B value of 0.220 in order to make a comparison with

existing theoretical calculations at these values. The first two sets

of data points were obtained from 3_-scintillation detectors, with inte-

gral electron energy thresholds of 1.2 MeV at a time of 56 and 93 days,

respectively, after the Starfish event. The next set of data points were

obtained from an electron spectrometer in October-November, 1963, some

470 days after the Starfish event. These data points were obtained by

integrating the measured spectrum above 1.2 MeV. The Gemini-4 data

[Reagan, et al., 1965] obtained at 1050 days are shown as the next set

of points. These data were also obtained by integrating the measured

spectrum above 1.2 MeV. Data obtained from a spectrometer on a satellite

flight in November, 1965 [Imhof, et al._ 1966], and the Gemini-7 data

are shown as the last sets of points. The solid lines represent the elec-

tron flux above 1.2 MeV that would be predicted as a function of time if

all of the initial electrons were fission-produced and if their decay were

controlled only by atmospheric scattering [Walt, 1964b]. The theoretical

curves have been arbitrarily normalized in both cases to the early-time
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data at 56 and 93 days. The dashed lines illustrated the fit to the ex-

perimental data of a single exponential decay function of the form

t-t o
¢(to) : _(to)e ---T-.

The decay constant T associated with the flux on L = 1.25 is 190 + 40

days and with the flux on L = 1.185 is 140 ± 40 days. For comparison,

the data of Bostrom and Williams [1965 ] obtained with a threshold solid-

state detector above 1.2 MeV for a period of 151 days commencing in Octo-

ber, 1963, yield a mean lifetime for electrons at L = 1.30 and

0.160 < B < 0.230 of 235 ± 20 days.

At L = 1.25, the theory would predict a slower decay rate than the

experimental data show. Whether different atmospheric models and varia-

tions of the atmospheric density with solar cycle can explain the observed

differences or whether other loss mechanisms are involved needs to be in-

vestigated. At L = 1,185 the theory predicts that virtually all of the

Starfish electron flux would have decayed away by the time of the Gemini

experiments. The data show, however, that a significant electron flux

still exists on this L shell. The observed flux may well represent the

natural existing flux on this L shell which, unfortunately, was not ade-

quately measured prior to 1962. A singular phenomenon which can perhaps

explain the behavior of the flux on both of these L shells is that of a

redistribution of the Starfish electrons from higher to lower L shells.

It has been shown [Imhof and Smith, 1965d] that the third adiabatic in-

variant can be violated at the time of magnetic storms with a resultant

redistribution of trapped particles to lower L shells.

Figure 52 shows the absolute differential flux spectrum of the

electrons measured at L = 1.250 and B = 0.220. The upper data were ob-

tained with a sintillation spectrometer in October, 1963, by Imhof and

Smith [1965c]. The two lower spectra were obtained with the Gemini-4

and -7 spectrometers. The theoretical spectrum shapes of Walt [1964b] for

the appropriate epoch have been normalized individually to the data at

about 2 MeV. At energies greater than this value, the theory and data are

in excellent agreement. At lower energies the difference between the
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theory and the Gemini data is morepronounced than observed in 1963. The
difference spectrum between the Gemini-4 data and the theoretical curve

can be described by a simple exponential shape with an Eo of 450 keV.

This difference spectrum could be that of the naturally-occurring elec-

trons, but the analysis is too preliminary to substantiate this. Since
the differential flux shownis in absolute units, this difference, if d_e

to naturally-occurring electrons, would indicate that a significant decay

has also occurred in that flux over the two-year period of these meas-

urements.

While the Gemini-4 proton data have not been analyzed in depth, a

comparison of the present spectral data with that of Heckmanand Armstrong
[1962] shownin Figure 51 indicates excellent agreement.
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Section 6

CONCLUSIONS

The Gemini-4 and Gemini-7 spectrometer experiments have provided

detailed flux and spectrum measurements on electrons and protons at low

altitudes in the South Atlantic anomaly where the population, lifetime,

and behavior of particles trapped on low magnetic shells are greatly influ-

encedby the earth's atmosphere. The Gemini data, when completely analyzed

and combined with the data obtained from earlier experiments performed by

our laboratory, will constitute some of the best available experimental

data on theStarfish electron belt. Through comparison of the experimental

data with atmospheric scattering theories, much can be learned regarding

loss and redistribution effects, as well as source terms for both protons

and electrons in the inner radiation belts. In addition to the foregoing

scientific interest, the Gemini data can greatly enhance the limited in-

formation currently available for updating models of the inner radiation

belt in this region of operational importance.

A great deal of processing and post calibration remains to be accom-

plished, however, before the final results will be obtained. The pre-

liminary results presented in this report were obtained from the data

processed to date and reflect only a fraction of the available information.

Of the fifty-five orbits of potential data, only fourteen orbits or 25 per-

cent have been processed. If only the anomaly and adjacent background re-

gion of an orbit are considered, approximately twelve full hours of data

remain to be processed. A final analysis will also require a much more

thorough investigation of such items as scattering, bremsstrahlung, orien-

tation, energy-dependent effects on the geometric factor, and background

contributions. Because the preliminary analysis indicates that valuable

scientific data will be obtained, every effort should be expendedto analyze

all of the available data beyond the scope of this contract.
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